51WS5 WetherStation5(LAN)の設定方法

1 LAN 接続の Wether Station5(BH4TDV)とは

AliExpress で APRS 互換の WetherStation にはシリアル出力で APRS Net51TNC (BH4TDV)に接続するタイプと、LAN 接続のものがあります。

今回、誤って後者(LAN 接続)を購入(図1 販売サイト)してしまいましたが、簡単に 接続設定ができたことと、他に説明書等が見当たらないことから設定等を記録として残 します。

図1 販売サイト

2 接続

図2 コネクタ配置

JR5LLA

(1) コネクタA LAN・電源供給 (POE)

付属のACアダプターのPOE 側とLAN ケーブル(ストレート)で接続します。

ピンはそれぞれ、1,2,3,6 がネットワーク、4,5 が +24V、 7,8 が GND に対応 しています。 ※入力電圧 7-25V、逆接続保護機能を内蔵。

ネットワークインターフェースには2つのインジケーターは以下の意味があります。 黄色:

- -消灯: ネットワークケーブルが接続されていません
- ·点灯:ネットワークが検出され、接続されました。
- 緑色:
- -常時点灯:サーバーに接続され、正常にログインしました。
- -1 秒間隔で点滅:サーバーは接続されていますが、ユーザー名が重複しているかパス ワードが間違っているなど、ログインできません。

・消灯:ネットワークケーブルが接続されていません

- (2) コネクターB 雨センサーインターフェース
 降雨量センサーとの接続:3、4、未使用::1、2、5、6
 ※レインセンサーはパッシブスイッチで、レインバケットが一度反転 = 0.33mm
- (3) コネクターC 風速と風向のインターフェース
 風速センサーとの接続:3、4、風向センサーとの接続:2、5、未使用:1、6
 風速と風速はパッシブ切り替え値、風速センサー、1ターン=2パルス=2HZ
 風速計算式:m/s = 風速 hz * 0.34
 風向:抵抗ネットワーク、ステップポテンショメータと同等
 風向エンクロージャには N¥S¥W¥E の方向がマークされています。設置中に、 北を指す N に印を付けます。
- (4) コネクターD PM2.5 空気質センサー モジュール インターフェイス:
 別売りの PM2.5 モジュール (PMS5003 センサー)を接続する場合に使用します。
 1=5V、2=GND、3=RX2 (ADC0)、4=EN (P0.4 ADC12)

(5) コネクターE 予備拡張インターフェイス①
接続先は指定されていないですが、一般的には別売りの日照計を接続します。
1=5V、2=GND、3=TXD3、(ADC9)、4=RXD3 (ADC8)
※APRSの場合接続すると照度がコメントとして〇〇〇〇lux と表示されます。

(6) コネクターF 予備拡張インターフェース②
 1 = 5V、2 = EN (P4.1)、3 = RXD4 (ADC10)、4 = TXD4 (ADC11)、5 = GND 接続先は指定されていないです。

(7) コネクターG I2C インターフェース:

1 = SDA, 2 = SCL, 3 = GND, 4 = 3.3V

このインターフェイスは、付属の温度、湿度、気圧などの I2C センサー デバイスを 接続するために使用されます。

(8) コネクターH セットインターフェイス、ISP アップグレードインターフェイス

1 = 5V, 2 = RXL, 3 = TX, 4 = GND

このインターフェイスを使用して、外部からパラメータの設定を行います。

また、このインターフェイスから出力されるデータを APRS Net51TNC に直接入力 すれば、シリアル接続の WetherStation としても機能します。

通信速度は 9600bps です。

ISP からファームウェアアップデートファイルが提供された場合のアップグレード にもこのコネクターを使用します。

※製品付属のシリアル・USB 変換基盤を介してパソコンと接続し、パラメータを設 定することができます。

(9) インジケータ K NET ネットワーク送受信データの状態を表示

TX がデータを送信すると点滅

RX がサーバーデータを受信すると点滅

27, June, 2025

JR5LLA

(1) AC アダプター、シリアル・USB 変換基盤、パソコンの接続

図4のとおり、まず、ACアダプタのPOEと表示された側とコネクターAをLANケ ーブル(ストレート)で接続します。

(2) シリアル・USB 変換基盤の接続

図4のとおコネクタHとシリアル・USB変換基盤を接続します。

 $2 = RXL \rightarrow TX(3.3V)$, $3 = TX \rightarrow RTX(3.3V)$, $4 = GND \rightarrow GND$

4 ターミナルソフトによる接続

🧕 Tera Term - [未接続] VT	_	\times
ファイル(F) 編集(E) 設定(S) コントロール(O) ウィンドウ(W) ヘルプ(H)		_
		<i>'</i>
Tera Term: 新しい接続	Х	
OTCP/IP ホスト(T): 192.168.1.150 ビヒストリ(O) サービス: O Telnet TCPボート#(P): 22 ◎ SSH SSH/バージョン(V): SSH2 ○その他 プロトコル(C): UNSPE	 ✓ EC ✓ 	
●シリアル(E) ボート(R): COMB: USB-SERIAL CH340 (COM	VB ~	
OK キャンセル ヘルプ(H)		

図5 ターミナルソフト (例)

任意のターミナルソフトを立ち上げ、シリアル(接続)を選択、シリアル・USB 変換 基盤に割り当てられたポートを選択し、OK をクリックして接続します。

5 初期設定値の確認

接続後、Ent キーを押すと、以下のとおり初期設定値が表示されますので、確認します。

 $2025/06/24 \ 19{:}49{:}36 \quad \ast \ast \ast \ 51WS5_D4_230725 \ BH4TDV \quad \ast \ast \ast$

CPU ID=F7F4CA6A03043A

POWER: 24.2V

1000110 21.20				
=====NET SETUP===				
AT+IP=192.168.001.150	←この機械の IP アドレス			
AT+GATEWAY=192.168.001.0	01 ←デフォルトゲートウェイ			
AT+MASK=255.255.255.000	←サブネットマスク			
AT+DNS=114.114.114.114	←DNS			
======IOT(LEWEI) SETUP=========				
AT+IOT=ON	←IOT サービスへの接続の有無 ※使わない			
AT+IOTS=www.lewei50.com	←IOT サービスの URL			
AT+IOTID=6f289b7f11084520bd2aad8e425e0000 ←IOT サービスの ID				
AT+IOTPATH=/api/V1/gateway/UpdateSensors/01 ←IOT サービスの PATH				
AT+IOTTIME=60	←IOT サービスへの転送間隔(秒)			
======APRS SETUP=========				
AT+APRS=OFF	←APRS サービスへの接続の有無			
AT+SERVER=asia.aprs2.net	←APRS サーバーの URL			
AT+CALL=NOCALL	←自局のコールサイン			
AT+SSID=13	←自局の SSID (WetherStation は 13)			
AT+TIME=60	←APRS サーバーへの転送間隔(秒)			
AT+BEACON=1,!,3135.90N,/,12021.80E,_,51WS5 ←自局設置場所の緯度・経度				
======DISP WS DATA SETUP=========				
AT+DISP=ON				

AT+ADJ=+0000.0

- 6 設定値の変更 ※Ent キーを押すと設定値を返してくるので、各設定値はテキストエ ディターで編集したものをコピーし、ターミナルソフトに貼り付けます。
 - (1) 本機の IP アドレスの変更

AT+IP=192.168.000.121, のように、本機に付与する IP アドレス (末尾に,(カンマ)を入力し、Ent キーを押します。

(2) デフォルトゲートウェイの IP アドレスの変更

AT+GATEWAY=192.168.000.001, のように、接続するローカルネットワークのデ フォルトゲートウェイの IP アドレス (末尾に,(カンマ)入力し、Ent キーを押しま す。

(3) サブネットマスクの IP アドレスの変更

AT+MASK=255.255.255.000, のようにサブネットマスクの IP アドレス (末尾に, (カンマ) を入力し、Ent キーを押します。

(4) DNS の IP アドレスの変更

AT+DNS=192.168.000.001, のように DNS の IP アドレス(末尾に(カンマ)を入 力し、Ent キーを押します。※ルーターを経由してネットワークに接続している場合 はここの IP アドレスはデフォルトゲートウェイと同じでいいようです。

(5) IOT サイトへの接続を OFF

送信した気象データをグラフ表示したりしてくれる Web サイトへの接続が初期値では ON になっているので、OFF にします。

AT+IOT=OFF と入力し、Ent キーを押します。

(6) APRS サービスを有効にする。

APRS サーバへの送信を有効にします。

AT+APRS=ON と入力し、Entキーを押します。

(7) APRS サーバーの URL を最寄りのサーバーに変更

日本の福岡にあるサーバを例にしてますが、各自で調べてください。

AT+SERVER=fukuoka.aprs2.net と入力し、Entキーを押します。

JR5LLA

(8) 自局コールサインの設定

コールサインが JX5YHL の場合の例としてますが、各自のコールを入力します。

AT+CALL=JX5YHL と入力し、Ent キーを押します。

(9) APRS サーバーへの転送間隔

10分(600秒)の場合を例としています。

AT+TIME=600 と入力し、Ent キーを押します。

(10)緯度・軽度の入力

北緯 33 度 22 分 5 秒、東経 133 度 05 分 33 秒の場合を例としていますが、各自の設置場所の緯度経度を入力してください。

AT+BEACON=1,!,3322.05N,/,13305.33E,_,51WS5 入力し、Ent キーを押します。

7 動作確認とサービス開始

以上で、設定は完了です。動作確認のため、ターミナルソフトは立ち上げたまま、AC アダプターの LAN 側に LAN ケーブルを接続し、家庭内のネットワーク(インターネ ットに接続できる)と接続します。

きちんと設定できていれば、ターミナルソフト上に送信データ等が表示されるように なり、<u>https://aprs.fi/</u> でコールサインを入力すれば転送された気象データが確認でき るようになります。

お疲れさまでした。設定は以上です。

eof